程亦凡谈冷冻电镜技术发展

  如果在两年前,我们说冷冻电镜(cryo-EM)是结构生物学研究的重要工具,很多人都应该不以为然。毕竟虽然冷冻电镜和X射线晶体学、核磁共振被称作结构生物学研究的三大利器,但不得不承认冷冻电镜是三者当中最弱的一种技术手段,在现在已解析的一千多种膜蛋白结构当中,90%以上都采用的是X射线晶体学方法,而核磁共振在小分子量的蛋白结构解析中也发挥了重要的作用。

  然而2013年12月5日,美国加州大学旧金山分校副教授程亦凡与同事DavidJulius两个实验室合作,采用单电子计数探测器,以近原子分辨率(3.4埃),确定了在疼痛和热知觉中起中心作用的一种膜蛋白TRPV1的结构,这一振奋人心的成果让研究人员们开始重新审视冷冻电镜在结构生物学研究中的所能发挥的作用。毕竟和X射线晶体学方法相比,它所需的样品量很少,也无需生成晶体,这对于一些难结晶的蛋白质的研究带来了新的希望。

  日前,在“2014冷冻电镜三维分子成像国际研讨会”召开期间,仪器信息网编辑特别采访了前来参加会议的程亦凡,请他介绍了研究所用的新型探测器件对提升冷冻电镜分辨率的影响,冷冻电镜技术的发展是否意味着X射线晶体学时代的结束?冷冻电镜未来的发展方向及需要关注的问题?

  采用直接电子探测技术使冷冻电镜的分辨率达到近原子分辨率水平

  尽管人们早已认识到,冷冻电镜有潜力达到原子级别的分辨率,但现在要实现这一点还面临着许多的挑战。在程亦凡的研究中,他的实验室参与了对冷冻电镜所用的相机进行的改进,和单电子计数探测器的研发。单电子计数探测器是一种直接电子探测器件,能够直接检测电子,而不需要像传统CCD相机那样先将电子转换成光子,然后再转化为光电子进行探测。

  程亦凡介绍说:“传统的CCD相机的DQE(检测量子效率)在低频仅为30%左右,高频则更低,严重影响了高分辨率信息的采集。因而研发新的探测器来提高分辨率是冷冻电镜研究的一个重要课题。这方面的研究主要是由我在UCSF的同事和合作者DavidAgard教授,以及英国MRC的RichardHenderson教授,和UCSD的几位教授推动的。他们在很多年前就都预见到相机开发对电镜技术是一件很重要的事情。可以说DavidAgard非常有远见,他预见到单电子计数的重要性,并决定要和Gatan一起做单电子计数探测器,而其他几家公司觉得单电子计数很难有实际应用。”

相关文章

返回顶部